
The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-1

4. Configure, Build, and Install the Toolkit

Introduction
This chapter describes how to configure and build the NCBI C++ Toolkit on various platforms. See also the
Getting Started chapter for general overview and some details.

Chapter Outline
UNIX

• Supported UNIX platforms

• Building instructions

MS Windows

• MS Visual C++.NET 7.1

• MS Visual C++.NET 8.0

• Cygwin/GCC

Mac OS X

• Xcode

• GCC

• Code Warrior

UNIX

Supported UNIX platforms

Building instructions

• Configuration and Installation Script configure

• Structure of the Build Tree Produced by configure

• Running the configure Script

• Getting Synopsis of Available Configuration Options

• Debug vs. Release Configuration

• Building Shared Libraries (DLLs)

• Hard-Coding Run-Time DLL Path into Executables and DLLs

• Multi-Thread Safe Compilation and Linking with MT Libraries

• Building in the 64-bit mode

• Automatic Generation of Dependencies (for GNU make Only)

• Naming the Build Tree

• After-Configure User Callback Script

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.release_notes.Platforms_OSs__compi
http://chapter://release_notes.Platforms_OSs__compi

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-2

• Tools and Flags

• Localization for the System and Third-Party Packages

• Prohibiting the Use of Some of the System and Third-party Packages

• Optional Projects

• Finer-grained Control of Projects: --with-projects

• Miscellaneous: --without-exe, --without-execopy, --with-lib-rebuilds(=ask)

• Compiler-specific configure Wrappers

• Quick Reconfiguration

Configuration and Installation Script configure

Different compilers compile C++ (and even C!) code differently; they may vary in the OS standard
libraries and header files, completeness of the C++ implementation, and in compiler bugs. There
are also different make and other tools and file naming conventions on different platforms.

Thus, a configuration is needed to use the platform- and compiler-specific features. For this purpose,
we are using the GNU autoconf utility to automatically generate compiler-specific header file ncbi-
conf.h and makefiles that would work for the given platform.

The user performs both configuration and installation by merely running platform-independent (sh,
bash) shell script configure (we pre-generate it in-house from template configure.ac using
autoconf).

During the configuration process, many compiler features are tested, and the results of this testing
are recorded in the configuration header ncbiconf.h by the means of C preprocessor variables.
For example, the preprocessor variable NO_INCLASS_TMPL indicates whether the compiler sup-
ports template class methods. Also contained in the ncbiconf.h file are preprocessor variables
used to define sized integer and BigScalar types.

The configure script will create a build tree, a hierarchy of directories where object modules,
libraries, and executables are to be built. It will also configure all *.in template files located in the
NCBI C++ source tree (src/) and deploy the resultant configured files in the relevant places of the
build tree. This way, all platform- and compiler-specific tools and flags will be "frozen" inside the
configured makefiles in the build tree. The ncbiconf.h (described above, also configured for the
given compiler) will be put to the inc/ sub-directory of the resultant build tree.

User can create as many such build trees as needed. All these trees would refer to the same (origin)
NCBI C++ source tree, whereas each build tree can contain its own (platform/compiler-specific)
ncbiconf.h header and/or different set of compilation/linking flags and tools ("frozen" in the
makefiles, particularly in Makefile.mk). This allows building libraries and executables using different
compilers and/or flags, yet from the same source, and in a uniform way.

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/autoconf
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.figgrp.ch_start.bld_tree_pic
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.figgrp.ch_start.bld_tree_pic
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.figgrp.ch_start.bld_tree_pic
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.figgrp.ch_start.bld_tree_pic
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.figgrp.ch_start.src_tree_pic
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.figgrp.ch_start.bld_tree_pic

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-3

Structure of the Build Tree Produced by configure

Each configuration process results in a new build tree. The structure of the tree is (see also in chart):

inc/ - contains the ncbiconf.h configuration header generated by the configure script.

build/ - contains a hierarchy of directories that correspond to those in the src/ (in NCBI C++
original sources). These directories will contain makefiles (Makefile.*) generated by the con-
figure script from the makefile templates (Makefile.*.in) of the corresponding project located
in the source tree. The resultant scripts and makefiles will keep references to the original NCBI C+
+ source directories. There is a "very special" file, Makefile.mk, that contains all configured tools,
flags, and local paths. This file is usually included by other makefiles. Later, all build results (object
modules, libraries, and executables, as well as any auxiliary files and directories created during the
build) will go exclusively into the build tree and not to the original NCBI C++ source directories. This
allows for several build trees to use the same source code while compiling and linking with different
flags and/or compilers.

lib/ - here go the libraries built by the build/-located projects.

bin/ - here go the executables built by the build/-located projects.

status/ - contains cache (config.cache), log file (config.log), and secondary configuration
script (config.status) produced by configure during the configuration process.

Running the configure Script

The following topics are presented in this section:

Getting Synopsis of Available Configuration Options

Debug vs. Release Configuration

Building Shared Libraries (DLLs)

Hard-Coding Run-Time DLL Path into Executables and DLLs

Multi-Thread Safe Compilation and Linking with MT Libraries

Building in the 64-bit mode

Automatic Generation of Dependencies (for GNU make Only)

Naming the Build Tree

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.figgrp.ch_start.bld_tree_pic

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-4

After-Configure User Callback Script

Tools and Flags

Localization for the System and Third-Party Packages

Prohibiting the Use of Some of the System and Third-party Packages

Optional Projects

Finer-grained Control of Projects: --with-projects

Miscellaneous: --without-exe, --without-execopy, --with-lib-rebuilds(=ask)

Compiler-specific configure Wrappers

Getting Synopsis of Available Configuration Options
To get the list of available configuration options (see Box 1), run configure --help. The NCBI-
specific options are at the end of the printout. NOTE: Do not use the "standard" configure options
listed in the "Directory and file names:" section of the help printout (such as --prefix=, --
bindir=, etc.) because these are usually not used by the NCBI configure script.

Debug vs. Release Configuration
The following two configure flags control whether to target for the Debug or Release version. These
options (default is --with-debug) control the appearance of preprocessor flags -D_DEBUG and -
DNDEBUG and compiler/linker flags -g and -O, respectively:

--with-debug -- engage -D_DEBUG and -g, strip -DNDEBUG and -O (if not --with-optimization)

--without-debug -- strip -D_DEBUG and -g, engage -DNDEBUG and -O (if not --without-optimization)

--with-optimization -- unconditionally engage -DNDEBUG and -O

--without-optimization -- unconditionally strip -DNDEBUG and -O

default: --with-debug --without-optimization

Building Shared Libraries (DLLs)
On the capable platforms, you can build libraries as shared (dynamic).

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.box.ch_config.configure_options.txt

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-5

--with-dll --with-static -- build libraries as both dynamic and static; however, if the library project
makefile specifies LIB_OR_DLL = lib, then build the library as static only, and if the library project
makefile specifies LIB_OR_DLL = dll, then build the library as dynamic only. Note that the resulting
static libraries consist of position-independent objects.

--with-dll -- build libraries as dynamic; however, if the library project makefile specifies LIB_OR_DLL
= lib, then build the library as static

--without-dll -- always build static libraries, even if the library project makefile specifies LIB_OR_DLL
= dll

default: build libraries as static; however, if the library project makefile specifies LIB_OR_DLL =
dll, then build the library as dynamic

Hard-Coding Run-Time DLL Paths into Executables and DLLs
To be able to run executables linked against dynamic libraries (DLLs), you have to specify the
location (runpath) of the DLLs. It can be done by hard-coding (using linker flags such as-R.....)
the runpath into the executables.

--with-runpath - hard-code the path to the lib/ dir of the Toolkit build tree.

--with-runpath=/foo/bar - hard-code the path to the user-defined /foo/bar dir.

--without-runpath - do not hard-code any runpath.

default: if --without-dll flag is specified, then act as if --without-runpath was specified; otherwise,
engage the --with-runpath scenario.

The preprocessor macro NCBI_RUNPATH will be set to the resulting runpath, if any.

NOTE: You also can use environment variable $LD_LIBRARY_PATH to specify the runpath, like
this:

setenv LD_LIBRARY_PATH "/home/USERNAME/c++/WorkShop6-ReleaseDLL/lib"/home/USERNAME/c++/WorkShop6-
ReleaseDLL/bin/coretest

HINT: The --with-runpath=.... option can be useful for the building of production DLLs and executa-
bles, which are meant to use production DLLs. The latter are usually installed not in the lib/ dir of
your development tree (build tree) but at some well-known dir of your production site. Thus, you can
do the development in a "regular" manner (i.e., in a build tree configured using only --with-run-
path); then, when you want to build a production version (which is to use, let's say, DLLs installed
in "/some_path/foo/"), you must reconfigure your C++ build tree with just the same options as
before, plus "--with-runpath=/some_path/foo". Then rebuild the DLLs and executables and install

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-6

them into production. Then re-reconfigure your build tree back with its original flags (without the "--
with-runpath=/some_path/foo") and continue with your development cycle, again using local in-
tree DLLs.

Multi-Thread Safe Compilation and Linking with MT Libraries
--with-mt - compile all code in an MT-safe manner; link with the system thread library.

--without-mt - compile with no regard to MT safety.

default: --without-mt

Building in the 64-bit Mode
--with-64 - compile all code and build executables in the 64-bit mode.

default: depends on the platform; usually --without-64 if both 32-bit and 64-bit build modes are
available.

Automatic Generation of Dependencies (for GNU make only)
--with-autodep - add build rules to automatically generate dependencies for the compiled C/C++
sources.

--without-autodep - do not add these rules.

default: detect if the make command actually calls GNU make; if it does, then --with-autodep,
else --with-autodep

Also, you can always switch between these two variants "manually", after the configuration is done,
by setting the value of the variable Rules in Makefile.mk to either rules or rules_with_autodep.

NOTE: You must use GNU make if you configured with --with-autodep, because in this case the
makefiles would use very specific GNU make features!

Naming the Build Tree
The configuration process will produce the new build tree in some default subdirectory of the root
source directory, and the base name of this subdirectory will reflect the compiler name and a
Release/Debug suffix, e.g., GCC-Release/. The default build tree name can be alternated by pass-
ing the following flags to the configure script:

--without-suffix - do not add Release/Debug, MT, and/or DLL suffix(es) to the build tree name.
Example: GCC/ instead of GCC-ReleaseMT/

--with-hostspec - add full host specs to the build tree name. Example: GCC-Debug--i586-pc-linux-
gnu/

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-7

--with-build-root=/home/foo/bar - specify your own build tree path and name.

With --with-build-root=, you still can explicitly use --with-suffix and --with-hostspec to add suffix(s)
to your build tree name in a manner described above. Example:--with-build-root=/home/foo/bar--
with-mt --with-suffix would deploy the new build tree in /home/foo/bar-DebugMT.

There is also a special case with "--with-build-root=." for those who prefer to put object files, libraries,
and executables where the sources are located. But be advised that this will not allow you to con-
figure other build trees.

After-Configure User Callback Script
You can specify your own script to call from the configure script after the configuration is complete:

--with-extra-action="<some_action>"

where <some_action> can be some script with parameters. The trick here is that in the
<some_action> string, all occurrences of "{}" will be replaced by the build dir name.

Example:

configure --with-extra-action="echo foobar {}"

will execute (after the configuration is done):

echo foobar /home/user/c++/GCC-Debug

Tools and Flags
There is a predefined set of tools and flags used in the build process. The user can alternate these
tools and flags by setting the environment variables shown in Table 1 for the configure script. In
particular, if you intend to debug the Toolkit with Insure++, you should run configure with CC and
CXX set to insure.

Later, these tools and flags will be engaged in the makefiles:

To compile C sources: $(CC) -c $(CFLAGS) $(CPPFLAGS)....

To compile C++ sources: $(CXX) -c $(CXXFLAGS) $(CPPFLAGS)....

To compose a library: $(AR) libXXX.a xxx1.o xxx2.o xxx3.o$(RANLIB)
libXXX.a

To link an executable: $(LINK) $(LDFLAGS) $(LIBS)

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-8

For more information on these and other variables, see the GNU autoconf documentation. The
specified tools and flags will then be "frozen" inside the makefiles of build tree produced by this
configure run.

Localization for the System and Third-Party Packages
There is some configuration info that usually cannot be guessed or detected automatically, and thus
in most cases it must be specified "manually" for the given local host's working environment. The
following localization environment variables can be set (see Table 2) in addition to the "generic"
ones (CC, CXX, CPP, AR, RANLIB, STRIP, CFLAGS, CXXFLAGS, CPPFLAGS, LDFLAGS, LIBS):

On the basis of Table 2, configure will derive the variables shown in Table 3 to use in the generated
makefiles.

Prohibiting the Use of Some of the System and Third-Party Packages
Some of the above system and third-party packages can be prohibited from use by using the fol-
lowing configure flags:

--without-sybase (Sybase)

--without-ftds (FreeTDS)

--without-fastcgi (FastCGI)

--without-fltk (FLTK)

--without-wxwin (wxWindows)

--without-ncbi-c (NCBI C Toolkit)

--without-sssdb (NCBI SSS DB)

--without-sssutils (NCBI SSS UTILS)

--without-sss (both --without-sssdb and --without-sssutils)

--without-geo (NCBI GEO)

--without-sp (NCBI SP)

--without-pubmed (NCBI PubMed)

--without-orbacus (ORBacus CORBA)

http://www.gnu.org/manual/autoconf

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-9

Optional Projects
You can control whether to build the following core packages using the following configure flags:

--without-serial -- do not build C++ ASN.1 serialization library and datatool; see in internal/c+
+/{src | include}/serial directories

--without-ctools -- do not build projects that use NCBI C Toolkit see in internal/c++/{src |
include}/ctools directories

--without-gui -- do not build projects that use wxWindows GUI package see in internal/c++/
{src | include}/gui directories

--with-objects -- generate and build libraries to serialize ASN.1 objects; see in internal/c++/
{src | include}/objects directories

--with-internal -- build of internal projects is by default disabled on most platforms; see in internal/
c++/{src | include}/internal directories

Finer-grained Control of Projects: --with-projects
If the above options aren't specific enough for you, you can also tell configure which projects you
want to build by passing the flag --with-projects=FILE, where FILE contains a list of extended regular
expressions indicating which directories to build in. With this option, the make target all_p will build
all selected projects under the current directory. If there is a project you want to keep track of but
not automatically build, you can follow its name with " update-only". To exclude projects that would
otherwise match, list them explicitly with an initial hyphen. (Exclusions can also be regular expres-
sions rather than simple project names.)

For instance, a file containing the lines

corelib$ util serial -serial/test test update-only

would request a non-recursive build in corelib and a recursive build in util, and a recursive build
in serial that skipped serial/test. It would also request keeping the test project up-to-date
(for the benefit of the programs in util/test).

NOTE: The flags listed above still apply; for instance, you still need --with-internal to enable internal
projects. However, update_projects.sh can automatically take care of these for you; it will also take
any lines starting with two hyphens as explicit options.

Miscellaneous: --without-exe, --without-execopy, --with-lib-rebuilds(=ask)
--without-exe -- do not build the executables enlisted in the APP_PROJ.

--without-execopy -- do not copy (yet build) the executables enlisted in the APP_PROJ.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/ctools
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/ctools
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/gui
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/gui
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/internal
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/internal
http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap09.html
http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap09.html

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-10

--with-lib-rebuilds -- when building an application, attempt to rebuild all of the libraries it uses in case
they are out of date.

--with-lib-rebuilds=ask -- as above, but prompt before any needed rebuilds. (Do not prompt for
libraries that are up to date.)

Here's a more detailed explanation of --with-lib-rebuilds: There are three modes of operation:

In the default mode (--without-lib-rebuilds), starting a build from within a subtree (such as internal)
will not attempt to build anything outside of that subtree.

In the unconditional mode (--with-lib-rebuilds), building an application will make the system rebuild
any libraries it requires that are older than their sources. This can be useful if you have made a
change that affects everything under objects but your project only needs a few of those libraries; in
that case, you can save time by starting the build in your project's directory rather than at the top
level.

The conditional mode (--with-lib-rebuilds=ask) is like the unconditional mode, except that when the
system discovers that a needed library is out of date, it asks you about it. You can then choose
between keeping your current version (because you prefer it or because nothing relevant has
changed) and building an updated version.

Compiler-specific configure Wrappers
Most of the non-GCC compilers require special tools and additional mandatory flags to compile and
link C++ code properly. That's why we have to have special scripts that perform the required non-
standard compiler-specific pre-initialization for the tools and flags used before running configure.

These wrapper scripts are located in the compilers/ directory, and now we have such wrappers for
the SUN WorkShop (5.3, 5.4, and 5.5), MIPSpro 7.3, GCC and ICC compilers:

• WorkShop.sh {32|64} [build_dir] [--configure-flags]

• WorkShop55.sh {32|64} [build_dir] [--configure-flags]

• MIPSpro73.sh {32|64} [build_dir] [--configure-flags]

• ICC.sh [build_dir] [--configure-flags]

Note that these scripts accept all regular configure flags and then pass them to the configure
script.

Quick Reconfiguration

Sometimes, you change or add configurables (*.in files, such as Makefile.in meta-makefiles) in
the source tree.

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-11

For the build tree to pick up these changes, go to the appropriate build directory and run the
script reconfigure.sh. It will automatically use just the same command-line arguments that you
used for the original configuration of that build tree.

Run reconfigure.sh with argument:

update - if you did not add or remove any configurables in the source tree but only modified some
of them.

reconf - if you changed, added, and/or removed any configurables in the source tree.

recheck - if you also suspect that your working environment (compiler features, accessibility of third-
party packages, etc.) might have changed since your last (re)configuration of the build tree and,
therefore, you do not want to use the cached check results obtained during the last (re)configuration.

without arguments - printout of script usage info.

Example:

cd /home/foobar/c++/GCC-Debug/build
./reconfigure.sh reconf

Naturally, update is the fastest of these methods, reconf is slower, and recheck (which is an exact
equivalent of re-running the configure script with the same command-line arguments as were pro-
vided during the original configuration) is the slowest.

1. Environment variables that affect the build process

Name Default Synopsis

CC gcc, cc C compiler
CXX c++, g++, gcc, CC, cxx, cc++ C++ compiler, also being used as a linker
CPP $CC -E C preprocessor
CXXCPP $CXX -E C++ preprocessor
AR ar cru Librarian
STRIP strip To discard symbolic info
CFLAGS -g or/and/nor -O C compiler flags
CXXFLAGS -g or/and/nor -O C++ compiler flags
CPPFLAGS -D_DEBUG or/and/nor-DNDEBUG C/C++ preprocessor flags
LDFLAGS None Linker flags
LIBS None Libraries to link to every executable
CONFIG_SHELL /bin/sh Command interpreter to use in the

configuration scripts and makefiles (it
must be compatible with sh)

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-12

2. User-defined localization variables.

Name Default Synopsis

THREAD_LIBS -lpthread System thread library
NETWORK_LIBS -lsocket -lnsl System network libraries
MATH_LIBS -lm System math library
KSTAT_LIBS -lkstat System kernel statistics library
RPCSVC_LIBS -lrpcsvc System RPC services library
CRYPT_LIBS -lcrypt[_i] System encrypting library
SYBASE_PATH /netopt/Sybase/clients/current Path to Sybase package (but see note below)
FTDS_PATH /netopt/Sybase/clients-mssql/current Path to FreeTDS package
FASTCGI_PATH $NCBI/fcgi-current Path to the in-house FastCGI client lib
FLTK_PATH $NCBI/fltk Path to the FLTK package
WXWIN_PATH $NCBI/wxwin Path to the wxWindows package
NCBI_C_PATH $NCBI Path to the NCBI C Toolkit
NCBI_SSS_PATH $NCBI/sss/BUILD Path to the NCBI SSS package
NCBI_GEO_PATH $NCBI/geo Path to the NCBI GEO package
SP_PATH $NCBI/SP Path to the SP package
NCBI_PM_PATH $NCBI/pubmed[64] Path to the NCBI PubMed package
ORBACUS_PATH $NCBI/corba/OB-4.0.1 Path to the ORBacus CORBA package

Note: It is also possible to make configure look elsewhere for Sybase by means of --with-sybase-local[=DIR]. If you specify a directory, it
will override SYBASE_PATH; otherwise, the default will change to /export/home/sybase/clients/current, but SYBASE_PATH will still take
priority. Also, the option --with-sybase-new will change the default version of Sybase from 12.0 to 12.5 and adapt to its layout.
It is also possible to override WXWIN_PATH by --with-wxwin=DIR, FLTK_PATH by --> --with-fltk=DIR, and ORBACUS_PATH by --with-
orbacus=DIR.

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-13

3. Derived localization variables for makefiles.

Name Value Used to...

THREAD_LIBS $THREAD_LIBS Link with system thread lib.
NETWORK_LIBS $NETWORK_LIBS Link with system network libs.
MATH_LIBS $MATH_LIBS Link with system math lib.
KSTAT_LIBS $KSTAT_LIBS Link with system kernel stat lib.
RPCSVC_LIBS $RPCSVC_LIBS Link with system RPC lib.
CRYPT_LIBS $CRYPT_LIBS Link with system encrypting lib.
SYBASE_INCLUDE -I$SYBASE_PATH/include #include Sybase headers
SYBASE_LIBS -L$SYBASE_PATH/lib[64] -lblk[_r][64] -lct

[_r][64] -lcs[_r][64] -ltcl[_r][64] -lcomn[_r]
[64] -lintl[_r][64]

Link with Sybase libs.

SYBASE_DLLS -ltli[_r][64] Sybase DLL-only libs
SYBASE_DBLIBS -L$SYBASE_PATH/lib[64] -lsybdb[64] Link with Sybase DB Lib API.
FTDS_INCLUDE -I$FTDS_PATH/include #include FreeTDS headers
FTDS_LIBS -L$FTDS_PATH/lib -lsybdb -ltds Link with the FreeTDS API.
FASTCGI_INCLUDE -I$FASTCGI_PATH/include[64] #include Fast-CGI headers
FASTCGI_LIBS -L$FASTCGI_PATH/lib[64] -lfcgi or -L

$FASTCGI_PATH/altlib[64] -lfcgi
Link with FastCGI lib.

FLTK_INCLUDE -I$FLTK_PATH/include #include FLTK headers
FLTK_LIBS -L$FLTK_PATH/[GCC-]{Release|Debug}

[MT][64]/lib -lfltk ... -lXext -lX11 ... or -L
$FLTK_PATH/lib

Link with FLTK libs.

WXWIN_INCLUDE -I$WXWIN_PATH/include #include wxWindows headers
WXWIN_LIBS -L$WXWIN_PATH/[GCC-]{Release|Debug}/

lib -lwx_gtk[d] -lgtk -lgdk -lgmodule -lglib
or -L$WXWIN_PATH/lib

Link with wxWindows libs.

NCBI_C_INCLUDE -I$NCBI_C_PATH/include[64] #include NCBI C Toolkit headers
NCBI_C_LIBPATH -L$NCBI_C_PATH/lib[64] or -L

$NCBI_C_PATH/altlib[64]
Path to NCBI C Toolkit libs.

NCBI_C_ncbi -lncbi NCBI C Toolkit CoreLib
NCBI_SSS_INCLUDE -I$NCBI_SSS_PATH/include #include NCBI SSS headers
NCBI_SSS_LIBPATH -L$NCBI_SSS_PATH/lib/....{Release|

Debug}[GNU][64][mt]
Link with NCBI SSS libs.

NCBI_GEO_INCLUDE -I$NCBI_GEO_PATH/include #include NCBI GEO headers
NCBI_GEO_LIBPATH -L$NCBI_GEO_PATH/lib/.... ...[GCC-|KCC-|

ICC-]{Release|Debug}[64]
Link with NCBI GEO libs.

SP_INCLUDE -I$SP_PATH/include #include SP headers
SP_LIBS -L$SP_PATH/{Release|Debug}[MT][64] -lsp Link with the SP lib.
NCBI_PM_PATH $NCBI_PM_PATH Path to the PubMed package.
ORBACUS_INCLUDE -I$ORBACUS_PATH/include -I

$ORBACUS_PATH/{Release|Debug}
[MT][64]/inc

#include ORBacus CORBA headers

ORBACUS_LIBPATH -L$ORBACUS_PATH/{Release|Debug}[MT]
[64]/lib

Link with ORBacus CORBA libs.

MS Windows

• MS Visual C++.NET 7.1

• MS Visual C++.NET 8.0

• Cygwin/GCC

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-14

MS Visual C++.NET 7.1
The following topics are discussed in this section:

• Get the Toolkit sources

• Build external libraries (optional)

• Build the Toolkit

• The Build Results

• Create custom solution

• Start a new project that uses the Toolkit

• Modify existing project in the Toolkit

• Start a new project in the Toolkit

• Generic (UNIX and MS Visual Studio) build rules

• Site-specific Build Tree Configuration

• DLL Configuration

• Fine-Tuning MSVC Project Files

• Excluding project from the build

• Adding files to project

• Excluding files from project

• Adjusting build tools settings

• Specifying custom build rules

Get the Toolkit Sources

The NCBI C++ Toolkit sources can be either retrieved from CVS repository:

cvs checkout -d cxx internal/c++

or extracted from the publicly distributed archive.

Build External Libraries

Some of the NCBI C++ Toolkit projects make use of the NCBI C Toolkit and/or freely distributed
3rd-party libraries (such as BerkeleyDB, LibZ, FLTK, etc.).

At NCBI, these libraries are already installed, and their locations are hard coded in the C++ Toolkit
configuration files.

Alternatively, the source code for the NCBI C Toolkit [ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/
2005/Dec_31_2005/NCBI_C_Toolkit] and the 3rd-party packages [ftp://ftp.ncbi.nih.gov/toolbox/
ncbi_tools++/2005/Dec_31_2005/ThirdParty] can be downloaded from the NCBI FTP site and built
- ideally, in all available configurations.

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowSection&rid=toolkit.section.ch_getcode.cvs_external
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowSection&rid=toolkit.section.ch_getcode.ftp_download
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/compilers/msvc710_prj/project_tree_builder.ini
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2005/Dec_31_2005/NCBI_C_Toolkit
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2005/Dec_31_2005/ThirdParty

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-15

Build the Toolkit

Project files and solutions for MS Visual Studio are generated by a special project -CONFIG-
URE-, using:

• cxx\src\....\Makefile.* (UNIX-style makefile templates)

• Visual Studio specific configuration files:

• cxx\compilers\msvc710_prj\project_tree_builder.ini

• cxx\compilers\msvc710_prj\dll\dll_info.ini

• cxx\src\....\Makefile.*.msvc

The list of the projects to build is taken from cxx\scripts\projects*.lst.

There are 5 standard solutions:

cxx\compilers\msvc710_prj\static\build\ncbi_cpp.sln

cxx\compilers\msvc710_prj\static\build\gui\ncbi_gui.sln

cxx\compilers\msvc710_prj\dll\build\ncbi_cpp_dll.sln

cxx\compilers\msvc710_prj\dll\build\gui\ncbi_gui_dll.sln

cxx\compilers\msvc710_prj\dll\build\gbench\ncbi_gbench.sln

The first two solutions are to build libraries and applications using static runtime libraries, and the
other three use DLL runtime libraries.

Initially, all solutions contain only two projects: -CONFIGURE- and -CONFIGURE-DIALOG-. They
generate all other Visual Studio projects and regenerate the solution. -CONFIGURE-DIALOG-
shows a popup dialog box that can be used to modify various configuration settings.

The -CONFIGURE- build rewrites the currently open solution. To ensure that all projects are
reloaded correctly, close the solution after the -CONFIGURE- build, and then open it again.

Now, all Toolkit "real" projects can be built using -BUILD-ALL- project.

Optional customization of the build environment is provided using the 'user' solution template
(ncbi_user.sln), the 'import project' (import_project.wsf) or the 'new
project' (new_project.wsf) MS Windows scripts.

The Build Results

The built Toolkit applications and libraries will be put, respectively, to:

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-16

cxx\compilers\msvc710_prj\{static,dll}\bin\<ConfigurationName>

cxx\compilers\msvc710_prj\{static,dll}\lib\<ConfigurationName>

Create Custom Solution

To help jump-start a new, customized solution, there is (in addition to the 5 standard solutions) a
template solution cxx\compilers\msvc710_prj\user\build\ncbi_user.sln. The list of
folders that need to be included into this solution is defined in cxx\scripts\projects
\ncbi_user.lst

N.B. Do not use this solution directly. Instead, make a copy of cxx\compilers\msvc710_prj
\user subtree and cxx\scripts\projects\ncbi_user.lst file; then rename the copies of
ncbi_user.sln and ncbi_user.lst, and edit these copies.

For example, assuming that these new copies are named user.sln and user.lst:

Specify the list of input folders in the user.lst file

Open solution user.sln

Edit configure._ file in -CONFIGURE- project (change ncbi_user.lst to user.lst)

By default, the solution uses static runtime libraries. To use DLL ones, add '-dll' command line
parameter right before the -logfile, like this: "%PTB_PATH%\project_tree_builder.exe" -
dll -logfile

Now, build project -CONFIGURE- project.

Start a New Project That Uses the Toolkit

To use an already built C++ Toolkit (with all its build settings and configured paths), use script cxx
\scripts\new_project.wsf to create a new project:

cscript \cxx\scripts\new_project.wsf <name> <type> [builddir] [flags]

Here, 'name' is the name of the project to create; 'type' is one of the predefined project types (run
the script with no parameters to see the list of available types); 'builddir' is the location of the C++
Toolkit libraries. E.g. if the Toolkit is built in U:\cxx folder:

cscript U:\cxx\scripts\new_project.wsf test app U:\cxx\compilers

\msvc710_prj

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-17

The script creates new local build tree, puts the project source files to \src\name folder, header
files to name\include\name, Visual Studio project file to name\compilers\msvc710_prj
\static\build\name, and the solution file to name\compilers\msvc710_prj\static
\build.

To add new source files or libraries to the project, edit name\src\name\Makefile.name.app
makefile template, then rebuild -CONFIGURE- project of the solution.

Modify Existing Project in the Toolkit

At NCBI, to work on just a few C++ Toolkit projects the 'import project.wsf' script can be used to
avoid retrieving and building of the whole C++ Toolkit source tree. E.g. to work on 'corelib' subtree,
run:

cscript U:\cxx\scripts\import_project.wsf corelib

The script will create the build tree, copy (or extract from CVS) relevant files, and create Visual
Studio project files and solution which reference pre-built Toolkit libraries installed elsewhere.

Start a New Project in the Toolkit

Follow the regular UNIX-style guidelines on the adding of new project into the Toolkit.

Then, build the -CONFIGURE- project and reload the solution.

To start a new project that will become part of the Toolkit, create makefile template first. For appli-
cations it must be named Makefile.< project_name>.app; for libraries -
Makefile.<project_name>.lib. If it is a new folder in the source tree, you will also need
Makefile.in file here - to describe to configuration system what should be built in this folder. Also,
such new folder must be mentioned in the parent folder's Makefile.in SUB_PROJ section.
Finally, make sure your new project folder is listed in the appropriate "*.lst" file in cxx\scripts
\projects - it can be either a subdirectory of an already listed directory, or a new entry in the list.

Generic (UNIX and MS Visual Studio) build rules

• cxx\src\....\Makefile.in

• cxx\src\....\Makefile.*.app

• cxx\src\....\Makefile.*.lib

These UNIX-style makefile templates describe the overall hierarchical structure of the C++ Toolkit
projects and also the individual projects' dependencies, source files and build parameters (flags).
These files are used to generate build rules for both UNIX and MS Visual Studio.

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-18

Site-specific Build Tree Configuration

File project_tree_builder.ini(see Table 4) describes build and source tree configurations, contains
information about the location of 3rd-party libraries and applications, and includes information used
to resolve macro definitions found in the UNIX-style makefile templates.

Toolkit project makefiles can list (in the pseudo-macro REQUIRES) a set of requirements that must
be met in order for the project to be built. For example, a project can be built only on UNIX, or only
in multi-thread mode, or if a specific external library is available. Depending on which of the require-
ments are met, the Toolkit configurator may exclude some projects in some (or all) build configu-
rations or define preprocessor and/or makefile macros.

Some of the Toolkit projects can be built differently depending on the availability of non-Toolkit
components. For them, there is a list of macros - defined in 'Defines' entry - that define conditional
compilation. To establish a link between such macro and a specific component, configuration file
also has sections with the names of the macro. For each build configuration project tree builder
creates a header file (see 'DefinesPath' entry) and defines these macros there depending on the
availability of corresponding components.

Many of the requirements define dependency on the components that are 3rd-party packages, such
as BerkeleyDB. For each one of these there is a special section (e.g. [BerkeleyDB]) in
project_tree_builder.ini that describes the path(s) to the include and library directories of the
package, as well as the preprocessor definitions to compile with and the libraries to link against.
The Toolkit configurator checks if the package's directories and libraries do exist, and uses this
information when generating appropriate MSVS projects.

There are a few indispensable external components that have their last-resort analog in the Toolkit.
'LibChoices' entry identifies such pairs, and 'LibChoiceIncludes' provides additional include
paths to the builtin headers.

NOTE: There are some requirements which, when building for MS Visual Studio, are always or
never met. These requirements are listed in 'ProvidedRequests', 'StandardFeatures', or
'NotProvidedRequests' of 'Configure' section.

DLL Configuration

The Toolkit UNIX-style makefile templates give a choice of building the library as DLL or static (or
both). Oftentimes however it is convenient to assemble "bigger" DLL made of the sources of several
static libraries.

The dll_info.ini (See Table 5) file specifies which libraries form such composite DLLs. The file begins
with a list of DLLs to build - 'DLLs' entry in 'DllBuild' section. Then, there is a section with the
name of each item from this list.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/compilers/msvc710_prj/project_tree_builder.ini
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/compilers/msvc710_prj/project_tree_builder.ini
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/compilers/msvc710_prj/dll/dll_info.ini

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-19

It defines:

• 'Hosting' - list of the static library projects whose sources will be included into this DLL

• 'Dependencies' - list of libraries that this DLL depends on

• 'DllDefine' - preprocessor macro that should be defined when compiling this DLL project. This
macro is used to define Microsoft-specific storage-class modifiers, which export or import
functions, data, and objects to and from DLL (see also include\corelib
\mswin_export.h header file).

Fine-Tuning MSVC Project Files

While default MSVS project settings are defined in Makefile.mk.in.msvc file, each project can require
additional MSVC-specific fine-tuning, such as compiler or linker options, additional source code,
etc. These tune-ups can be specified in Makefile.<project_name>.[lib|app].msvc file
located in the project source directory. All entries in such *.msvc file are optional.

Any section name can have one or several optional suffixes, so it can take the following forms:

• SectionName

• SectionName.[static|dll]

• SectionName.[debug|release]

• SectionName.[static|dll] [debug|release]

• SectionName.[debug|release].ConfigurationName

• SectionName.[static|dll] [debug|release].ConfigurationName

Here, 'static' or 'dll' means the type of runtime libraries that a particular build uses; 'debug' or
'release' - the type of the build configuration; 'ConfigurationName' - the name of the build
configuration.

Settings in sections with more detailed names override ones in sections with less detailed names.

Excluding project from the build

To exclude project from the build, set 'ExcludeProject' entry in 'Common' section:

• [Common]

• ExcludeProject=TRUE

Adding files to project

This information should be entered in 'AddToProject' section. The section can have the following
entries:

• [AddToProject]

• SourceFiles=

• ResourceFiles=

• IncludeDirs=

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/Makefile.mk.in.msvc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/Makefile.corelib.lib.msvc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/dbapi/Makefile.dbapi_sample.app.msvc

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-20

• LIB=

• HeadersInInclude=

• HeadersInSrc=

'SourceFiles' entry lists additional (usually MS Windows specific) source files (without extension)
for the project. 'ResourceFiles' entry lists MS Windows resource files, 'IncludeDirs' - additional
include directories, and 'LIB' - additional libraries for the project.

By default, all header files found in the project's include and source directories are added to the
MSVS project. If that's not exactly what you need though, then the list of headers can be alternated
using 'HeadersInInclude' and 'HeadersInSrc' entries. There, file names should be entered
with their extension; exclamation mark means negation; wildcards are allowed. For example:

HeadersInInclude = *.h file1.hpp !file2.h

Means "add all files with h extension, add file1.hpp, and do not add file2.h"

NOTE: A single exclamation mark with no file name means "do not add any header files".

Excluding files from project

The information should be entered in 'ExcludeFromProject' section, which can have 'Source-
Files' and 'LIB' entries.

Adjusting build tools settings

Build tools are 'Compiler', 'Linker', 'Librarian', and 'ResourceCompiler' - that is, the tools
used by MS Visual Studio build system. The names of available entries in any one of these sections
can be found in Makefile.mk.in.msvc file, the meaning and possible values - in the description
of "Microsoft Development Environment VC++ Project System Engine 7.0 Type Library".

Specifying custom build rules

To specify custom build rules for selected files in the project (usually non C++ files) use 'Cus-
tomBuild' section. It has a single entry - 'SourceFiles', which lists one or more files to apply the
custom build rules to. Then, create a section with the name of the file, and define the following entries
there: 'Commandline', 'Description', 'Outputs', and 'AdditionalDependencies' - that is,
the same entries as in Custom Build Step of Microsoft Visual Studio project property pages. This
data will then be inserted "as is" into the MSVS project file.

MS Visual C++.NET 8.0
To build the project on Visual C++.NET 8.0 follow the instructions for Visual C++.NET 7.1 Build the
Toolkit and The Build Results replacing msvc710_prj with msvc800_prj respectively.

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-21

Note: The Visual C++.NET 8.0 seems to work significantly slower than Visual C++.NET 7.1.

Cygwin/GCC
To build the project on Cygwin/GCC just follow the generic Unix guidelines.

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-22

4. Project Tree Builder INI file (Local Site)

Section Key Comments

[ProjectTree] MetaData Makefile.mk.in - in this file the project tree
builder will be looking for the UNIX project
tree macro definitions.

include include "include" branch of project tree
src src "src" branch
compilers compilers "compilers" branch
projects scripts/projects "projects" branch

[msvc7] Configurations List of configurations to build
compilers Sub-branch of compilers branch for MSVC

7.10 projects
MakefilesExt Extension of MSVC-specific makefiles
Projects "build" sub-branch
MetaMakefile Master .msvc makefile - Makefile.mk.in.msvc
DllInfo INI file with DLLs information (hosting,

dependencies, define for export prefixes)
[Configure] NotProvidedRequests List of requirements from UNIX makefiles

that will not be provided. Projects with
such requirements will not be created.

DefinesPath Path to .h file that will contain HAVE_XXXX
definitions. The path is relative from the
project tree root.

Defines List of HAVE_XXXX preprocessor
definitions.

LibChoices List of pairs <libID>/<Component>. If the
third-party library <Component> is
present, then this library will be used
instead of the internal library <libID>.

ThirdPartyLibsToInstall List of components, which DLLs will be
automatically installed in the binary build
directory.

ThirdPartyLibsBinPathSuffix Part of the naming convention for third-party
DLLs installation makefile.

ThirdPartyLibsBinSubDir Part of the third-party DLLs installation target
location.

[LibChoicesIncludes] CMPRS_INCLUDE Definition for the include directories for
LibChoices.

[HAVE_XXXX] Component List of the components to check. An empty
list means that the component is always
available. A non-empty list means that the
component(s) must be checked on
presentation during configure.

[Debug],[DebugDLL],etc... debug TRUE means that the debug configuration
will be created.

runtimeLibraryOption C++ Runtime library to use.
[NCBI_C_LIBS],[FLTK_LIBS_GL] Component List of libraries to use.
[<LIBRARY>] INCLUDE Include path to the library headers.

DEFINES Preprocessor definition for library usage.
LIBPATH Path to library.
LIB Library files.
CONFS List of supported configurations.

[Defines] NCBI_C_INCLUDE NCBI C Toolkit library include path.
NCBI_C_ncbi NCBI C Toolkit libraries to use in projects with

this definition in the UNIX makefile.

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-23

Section Key Comments

[DefaultLibs] INCLUDE Default libraries will be added to each project.
This section is to negotiate the
differences in the default libraries on the
UNIX and Win32 platforms. Same as for
[<LIBRARY>].

LIBPATH Same as for [<LIBRARY>].
LIB Same as for [<LIBRARY>].

[Datatool] datatool ID of the datatool project. Some projects
(with ASN or DTD sources) are
dependent on the datatool.

Location.App Location of datatool executable for APP
projects.

Location.Lib Location of datatool executable for LIB
projects.

CommandLine Partial command line for datatool.

5. DLLs Information INI file (dll_info.ini)

Section Key Comments

[DllBuild] DLLs List of DLLs.
Configurations Configurations of DLL build.
BuildDefine Preprocessor definition for projects in DLL

build.
[<dll_name>] Hosting List of libraries to host in this DLL.

Dependencies List of project IDs that this DLL depends
upon.

DllDefine Preprocessor definition for the build libraries
in DLL mode.

Mac OS X

Xcode

GCC

CodeWarrior

Xcode

Build the Toolkit

Open, build and run a project file in compilers/xCode.

This GUI tool generates a new NCBI C++ Toolkit Xcode project. It allows to:

• Choose which Toolkit libraries and applications to build.

The NCBI C++ Toolkit Configure, Build, and Install the Toolkit

4-24

• Automatically download and install all 3rd-party libraries.

• Specify third-party installation directories.

The Build Results

The built Toolkit applications and libraries will be put

to the output directory selected by the user during step A.

Apple Xcode versions 2.0 and above support build configurations. We use the default names Debug
and Release, so the built applications will go to, for example:

• <output_dir>/bin/Debug/Genome Workbench.app

• <output_dir>/bin/Release/Genome Workbench.app

Apple Xcode versions before 2.0 do not support build configurations, so the build results will always
go to:

<output_dir>/bin/Genome Workbench.app

Most libraries are built as Mach-O dynamically linked and shared (.dylib) and go to:

<output_dir>/lib

Genome Workbench plugins are built as Mach-O bundles (also with .dylib extension) and get
placed inside Genome Workbench application bundle:

<output_dir>/Genome Workbench.app/Contents/MacOS/plugins

GCC
To build the project with GCC just follow the generic Unix guidelines.

CodeWarrior
For various reasons we have decided to drop support for CodeWarrior. The latest supported version
of CodeWarrior can be found here

